Short Tricks on Trigonometric Identities by by Top Competitive Institute for Banking, SSC, Railway
Short Tricks on Trigonometric Identities
Pythagorean Identities
- sin2 θ + cos2 θ = 1
- sec2 θ – tan2 θ = 1
- cosec2 θ – cot2 θ = 1
Negative of a Function
- sin (–x) = –sin x
- cos (–x) = cos x
- tan (–x) = –tan x
- cosec (–x) = –cosec x
- sec (–x) = sec x
- cot (–x) = –cot x
TRICK-1
If A + B = 90o, Then
- Sin A = Cos B
- Sin2A + Sin2B = Cos2A + Cos2B = 1
- Tan A = Cot B
- Sec A = Cosec B
For example:
If tan (x+y) tan (x-y) = 1, then find tan (2x/3)?
Solution:
Tan A = Cot B, Tan A*Tan B = 1
So, A +B = 90o
(x+y)+(x-y) = 90o, 2x = 90o , x = 45o
Tan (2x/3) = tan 30o = 1/√3
TRICK-2
If A – B = 90o, Then
- Sin A = Cos B
- Cos A = – Sin B
- Tan A = – Cot B
If A ± B = 180o, then
- Sin A = Sin B
- Cos A = – Cos B
If A + B = 180o
Then, tan A = – tan B
If A – B = 180o
Then, tan A = tan B
For example:
Find the Value of tan 80o + tan 100o ?
Solution:
Since 80 + 100 = 180
Therefore, tan 80o + tan 100o = 1
TRICK-3
If A + B + C = 180o, then
Tan A + Tan B +Tan C = Tan A * Tan B *Tan C
sin θ * sin 2θ * sin 4θ = ¼ sin 3θ
cos θ * cos 2θ * cos 4θ = ¼ cos 3θ
For Example:
What is the value of cos 20o cos 40o cos 60o cos 80o?
Solution:
We know cos θ * cos 2θ * cos 4θ = ¼ cos 3θ
Now, (cos 20o cos 40o cos 80o ) cos 60o
¼ (Cos 3*20) * cos 60o
¼ Cos2 60o = ¼ * (½)2 = 1/16
TRICK-4
If a sin θ + b cos θ = m & a cos θ – b sin θ = n; then a2 + b2 = m2 + n2
For Example:
If 4 sin θ + 3 cos θ = 2 , then find the value of 4 cos θ – 3 sin θ:
Solution:
Let 2 cos θ – 3 sin θ = x
By using formulae a2 + b2 = m2 + n2
42 + 32 = 22 + x2
⇒16 + 9 = 4 + x2
⇒X = √21
TRICK-5
If sin θ + cos θ = p & cosec θ – sec θ = q; then P – (1/p) = 2/q
For Example:
If sin θ + cos θ = 2 , then find the value of cosec θ – sec θ:
Solution:
By using formulae:
P – (1/p) = 2/q
2-(1/2) = 3/2 = 2/q
Q = 4/3 or csc θ – sec θ = 4/3
TRICK-6
If a cot θ + b csc θ = m & a csc θ + b cot θ = n then b2 – a2 = m2 – n2
If cot θ + cos θ = x & cot θ – cos θ = y then x2 – y2 = 4 √xy
If tan θ + sin θ = x & tan θ – sin θ = y then x2 – y2 = 4 √xy
If
y = a2 sin2x + b2 csc2x + c
y = a2 cos2x + b2 sec2x + c
y = a2 tan2x + b2 cot2x + c
then,
ymin = 2ab + c
ymax = not defined
For Example:
If y = 9 sin2 x + 16 csc2 x +4 then ymin is:
Solution:
For, y min = 2* √9 * √16 + 4
= 2*3*4 + 20 = 24 + 4 = 28
TRICK-7
If
y = a sin x + b cos x + c
y = a tan x + b cot x + c
y = a sec x + b csc x + c
then, ymin = + [√(a2+b2)] + c
ymax = – [√(a2+b2)] + c
For Example:
If y = 1/(12sin x + 5 cos x +20) then ymax is:
Solution:
For, y max = 1/x min
= 1/- (√122 +52) +20 = 1/(-13+20) = 1/7
Sin2 θ, maxima value = 1, minima value = 0
Cos2 θ, maxima value = 1, minima value = 0
Important questions of Trigonometric identities
(d)None of these
Ans.(a)
(2)If is acute and then is equal to
(a)
(b)3
(c) 2
(d) 4
Ans. (c)
If sum of the inversely proportional value is 2
(a)-1
(b)0
(c)sec2x
(d)1
Ans. (d)
The simplified value of
is obtained by putting x=y=45°
(a) 1
(b) -1
(c) 2
(d) -2
Ans. (c)
(a)7/4
(b) 7/2
(c)5/2
(d)5/4
Ans. (d)
Note:if x+y=a
and x-y=b
then x=(a+b)/2 and y=(x-y)/2
For more materials on English, click link below
For more materials on Aptitude, click link below
For more materials on Reasoning, click link below
For more materials on General Studies, click link below
For more materials on Computer, click link below
To enhance word power (vocabulary), click link below
For Daily Current Affairs, click link below